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Abstract

We model +rms’ output decisions in a repeated duopoly framework, focusing on three interre-
lated issues: (1) the role of learning in the adjustment process toward equilibrium, (2) the role of
organizational structure in the +rm’s decision making, and (3) the role of changing environmen-
tal conditions on learning and output decisions. We characterize the +rm as a type of arti+cial
neural network, which must estimate its optimal output decision based on signals it receives from
the economic environment (which in4uences the demand function). Via simulation analysis we
show: (1) how organizations learn to estimate the optimal output over time as a function of
the environmental dynamics, (2) which networks are optimal for each level of environmental
complexity, and (3) the equilibrium industry structure.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of this paper is to investigate the e?ects of both environmental and or-
ganizational factors on the outcome of repeated Cournot games. We model the +rm
as an information processing network that is capable of learning a data set of en-
vironmental variables. Standard models of the +rm, in general, tend to focus on the
quantity strategy, while ignoring the fact that decisions are made within an organiza-
tional framework. This is particularly true for oligopolistic industries, which tend to
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be dominated by large +rms employing thousands of workers; furthermore, these +rms
are run by a large group of managers that must agree on a strategy each period. These
facts are often neglected in models of oligopolistic interaction, even those that focus
on learning and dynamics.
Contrary to most models dealing with the dynamics of Cournot games, we are

not interested in modeling the learning of the optimal strategy per se, but rather
in the learning of the economic environment. More speci+cally, we model +rms of
di?erent organizational structures competing, given that they have to learn the e?ect
of changing environmental states on the demand parameters. Using this approach, we
are able to investigate the relationship between optimal +rm structure (in the sense of
most pro+cient at learning the environmental characteristics) and the complexity of the
environment in which quantity competition takes place. Building on a previous paper
(Barr and Saraceno, 2002), we model the +rm as a type of arti+cial neural network
(ANN), which must learn to make its optimal output decision based on signals it
receives from the economic environment (which in4uences the demand function). The
use of ANNs allows us to make explicit organizational structure, and hence to include
it in a model of +rm competition.
We model the structure of the +rm as the size of the network, given by the number

of processing units; we show in Barr and Saraceno (2002) that +rms face a trade-o?
between speed and accuracy. Smaller, more 4exible +rms learn faster, while larger +rms
are more accurate in the long run. In addition, we show that the solution to the problem
posed by this trade-o? is in4uenced by environmental characteristics, a position long
held by management scholars. The objective of the paper is, therefore, to understand if,
and how, this conclusion applies to the speci+c case of Cournot competitors facing (and
having to learn) a changing demand curve, and how the complexity of environment
a?ects optimal +rm size.
The +rst conclusion of the paper is that neural networks are capable of converging to

the Nash equilibrium of a Cournot game. Over time, they learn to perform the mapping
between environmental characteristics and optimal quantity decisions. This result is not
surprising, as many adaptive algorithms have been shown to have the same property.
The second – also expected – result is that pro+tability (linked to the pro+ciency of
network learning) is inversely related to the complexity of the external environment
and to the error +rms make in trying to learn the demand parameters.
These +ndings constitute the background for the main results of the paper. First,

given quantity competition between two +rms, small +rms/networks reach relatively
quickly a satisfactory knowledge of the function linking environmental factors and
demand; on the other hand larger +rms, initially slower to learn, tend in the long run
to outperform the small ones by becoming more accurate in their mapping. Related
to this, we show that the optimal +rm size is increasing in the complexity of the
environment itself; in more complex environments the time necessary to learn the
factors that determine demand is longer, so the short run competitive edge of smaller
+rms becomes progressively less relevant.
This result is robust, as it emerges both from a round-robin tournament between

networks of di?erent sizes, and from regression analysis on the simulation data, which
shows how time, +rm size, competitor’s +rm size, and environmental complexity a?ect
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+rm learning and hence performance. Finally, we show that an equilibrium industry
con+guration (in which there is no incentive to change +rm size) may be found, and
that it is also related to the complexity of the environment.
The paper is structured as follows. The next section brie4y reviews the relevant liter-

ature, showing how we relate to (and depart from) the models on learning in oligopoly
games on the one hand, and to agent-based models on the other. The following section
introduces the repeated Cournot game, describing the environment and our measure of
environmental complexity. Then, Section 4 describes our model of the +rm as a network
of agents – a type of neural network – and describes its application to the duopoly
example. Section 5 presents the results of the simulations and discusses the main
conclusions of the paper. Finally, in Section 6 we conclude with suggestions for fur-
ther research and extensions.

2. Related literature

Our work relates to two di?erent areas. The +rst is the literature on Cournot compe-
tition and its dynamics. Since at least the seminal paper by Cyert and DeGroot (1973),
the Cournot model has been widely studied by researchers interested in learning and
strategic interaction. Some of the works in this area explore the conditions under which
the duopolists will converge to the Cournot equilibrium output (recent examples in-
clude Kopel, 1996; Chiarella and Khomin, 1996; Puu, 1998; Bischi and Kopel, 2001).
In these models agents have to learn how to react to their opponents’ behavior. Given
the di?erent hypotheses (on demand characteristics, on externalities in the cost function,
and on expectation formation), the system may be described by complex dynamics, that
yield one or more equilibria; furthermore, initial conditions usually determine whether
convergence occurs, or chaotic dynamics are engendered.
In a related approach, Vega-Redondo (1997), Vriend (2000) and Riechmann (2002)

build on evolutionary game theory to investigate whether the Cournot outcome is sta-
ble. The last two papers, in particular, show that convergence to the Walrasian prices
and quantities is more probable when social (as opposed to individual) learning takes
place, and agents are boundedly rational. In these papers learning is in regards to the
opponent’s strategy, or the +rm’s own in4uence on prices; information about the envi-
ronment (i.e., the parameters of the demand function) is either complete or unnecessary
for learning to take place.
Two recent papers (LJeonard and Nishimura, 1999; Bischi et al., 2002), on the other

hand, investigate the case in which duopolists lack knowledge of the demand function
they face. If demand is misspeci+ed, then even best reply dynamics may converge to
steady states (pseudo equilibria) di?erent from the unique Cournot–Nash outcome. Nev-
ertheless, in these models there is no learning, as the misspeci+cation is not corrected
along the way. 2

2 Other papers (e.g., Verboven, 1997) search for conditions under which cooperation is sustainable in
repeated Cournot games. Our paper does not deal with this issue.
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This paper merges the issues described above, as we address learning and misspeci+-
cation. We assume that demand depends on environmental characteristics in a way un-
known to the agents. The +rm observes signals from the environment and based on
these signals selects a quantity to produce. After observing the rival’s output and the
true parameters, it calculates what its output should have been, i.e., the best response. It
subsequently uses the error to improve its performance, i.e., the knowledge of the rela-
tionship between observable environmental characteristics and the demand parameters.
In other words, rather than learning the best strategy, +rms have to learn the envi-
ronment in which they operate. In this sense, as will become clear in the following
pages, strategic interaction and the best response strategy remain in the background,
entering the picture only as a benchmark against which the +rm evaluates its own
performance.
As stated in the introduction, we seek to investigate how +rm learning interacts with

organizational features. As a consequence, the second area of the literature related to our
work is that of agent-based models of the +rm (Radner, 1993; Carley, 1996; DeCanio
and Watkins, 1998; Li, 1999). These models, borrowing heavily from computer science,
represent the +rm as a network of information processing agents (nodes). In general
these papers study which types of networks minimize the costs of processing and
communicating information.
Our model is also agent-based, as we assume that output decisions are made by

an information processing network. However, our work is di?erent in two respects. In
general, and unlike other agent-based models, we directly model the relationship be-
tween the external environmental variables, +rm learning and performance; secondly,
we explicitly provide an agent-based model of Cournot competition, which, to our
knowledge, has not been done before. This paper is an attempt to apply a standard eco-
nomic problem (Cournot competition) to a network of information processing agents
to show how +rms adapt to di?erent environments in order to perform at optimal
levels.
Our agent-based approach models the +rm as a type of arti+cial neural network.

ANNs are common in computer science and psychology, where they have been used for
pattern recognition and modeling of the brain (Croall and Mason, 1992; Skapura, 1996).
In economics, neural networks have been employed less frequently. One application –
in econometrics – has been to use ANNs as non-linear estimation equations (Kuan
and White, 1994). In game theory, Cho (1994) has tackled a prisoner’s dilemma
game using a very simple neural network (a perceptron) as a way to model bounded
rationality. Because of the stochastic and non-linear nature of ANNs, we employ a
simulation-based approach to study the relationship between +rm performance, compe-
tition and size.

3. Cournot competition with stochastic demand

Suppose we have two +rms competing in quantities, facing the same linear, down-
ward-sloping demand curve, with the following pro+t functions:

�i = [a − b(q1 + q2)]qi − ciqi i = 1; 2;
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where qi is the output decision of each +rm, ci¿ 0 is marginal production cost, and a,
b¿ 0 are the demand parameters. Since we focus on performance, and for simplicity,
we assume that costs are zero, i.e., ci = 0. 3

If the demand parameters were known we would have the standard scenario: each
+rm tries to maximize its pro+t, given the estimate of its rival’s output, denoted Eiq−i.
The +rst-order condition yields a reaction function for each +rm:

qbri =
1
2

[a
b

− Eiq−i

]
;

where qbri is the best response output. If each player correctly assumes that the rival
will produce along its reaction function then the (Nash) equilibrium output and pro+t
for each +rm are

q∗
i =

1
3
a
b
; �∗

i =
1
9
a2

b
:

Textbook analysis tells us that with our linear speci+cation of the demand function
the two +rms will converge to the Nash equilibrium, even with backward-looking
expectation formation.

3.1. The environment

In this paper we assume that the demand parameters are stochastic in the sense that
a and b are functions of environmental variables, which 4uctuate according to a given
probability law. For example, the intercept coePcient represents all those non-price
elements that a?ect demand, such as preferences, income, price of substitutes, etc.; ex
ante the e?ect of these variables on the position of the demand curve may be only
partially known by the +rm; over time the organization has to learn how these factors
indeed a?ect demand.
We assume that each parameter is a function of a vector of environmental states

(signals), which represent the characteristics of the environment; and that each vec-
tor x (of length N ) belongs to the set X of environmental data vectors: xk ∈X,
k = 1; : : : ; v. 4 We model these environmental variables as a string of binary digits,
a simple way to summarize the presence or absence of features in the environment.
We refer to the current vector (indexed by time, t) xt ∈X as to the state of the envi-
ronment, and to X as the environment. Every period, the state of the environment is
determined by random draw from the set X, where each element xk ∈X has a +xed
probability, pk , of being selected (pk¿ 0, and

∑v
k=1 pk = 1).

3 Further, without any loss of generality, we assume that the +rm bears no cost to carry the network. This
assumption does not a?ect the qualitative results of Section 5.

4 X is a subset of the set of all binary digit vectors of length N (= 25), which has 2N elements. In the
simulations below, we pick � (= 25) vectors by random draws. This data set remains constant through-
out all the simulations (generating alternative data sets does not a?ect the qualitative results presented in
Section 5).
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Eqs. (1) and (2) show the functional form for the intercept and slope of the demand
function

a(x) = ca

(
N∑
n=1

n�nxn

)2
; (1)

b(x) = cb
N∑
n=1

n�nxn; (2)

where �n, �n ∈ (0; 1) ∀n are constants, and ca and cb are normalizing constants so that
the values of a and b are always between zero and one. 5 This characterization says
for example that the nth bit for the slope has a marginal contribution of n�nQxn. By
multiplying each bit by its index n we sort them in order of importance, x1 being the
element that contributes the least, and xN being the most important. Notice furthermore
that, though not necessary, we assume this order of importance to be the same for
a and b.

3.2. Complexity

In our model, competition occurs in two areas: along the reaction curve (i.e., one
+rm’s increased output a?ects, via the price, the other +rm’s pro+t) and along the
‘learning dimension’. That is to say, the better and/or faster a +rm is able to estimate
the demand parameters, the more it has a competitive advantage, in the sense that
it will have a relatively higher pro+t compared to its rival. We discuss this type of
advantage in Section 4.2.
Firms have to learn to recognize how environmental changes will a?ect demand and

hence their optimal output. In other words, they have to learn how to map the observed
environmental vector x into the values of a and b. We de+ne the complexity of this
pattern recognition problem as the entropy of the probability distribution generating the
environmental data points. Heuristically, we can think of entropy as a measure of the
quantity of information the +rm is likely to process. If the distribution is concentrated
on one or two points, for example, then it is very likely to see those points more often;
while in a more uniform distribution the +rm is more likely to see all the di?erent
states. In other words, entropy is the amount of ‘disorder’, and as such we take it as
a measure of complexity. Given the probability distribution associated with the set X,
the entropy is de+ned as

E = −
v∑

k=1

pk ln(pk):

Entropy ranges between 0 for a degenerate distribution and ln(v) for a uniform distri-
bution. 6

5 We add the square term on the intercept in order to increase the diPculty of the learning problem, since
our interest is creating a model where many agents are needed in order to learn.

6 In the simulations below complexity classes are generated by random draws. Since we have pk ¿ 0, ∀k
the minimum entropy for our data set is strictly greater than zero.
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4. The �rm as a network of information processing agents

In the previous section we argued that competition between +rms occurs in an
unknown environment; +rms must learn to map observed environmental char-
acteristics to unknown demand parameters. For this reason we view the +rm as an
information processing algorithm. As mentioned in Section 2, we model the +rm
as a network of information processing agents. In Barr and Saraceno (2002) we
highlight the features of +rm behavior discussed by management scholars (such as
Galbraith, 1973 and Lawrence and Lorsch, 1986) that can be modeled by ANNs:
+rms/organizations process information in a decentralized manner, both serially
and in parallel (i.e., information within hierarchical levels is processed simultane-
ously, while it is processed serially between levels). Organizations learn by experience
and they learn to generalize their experience to other related situations; this learn-
ing involves both costs and bene+ts, for which there is an optimal +rm size. Fur-
ther, the knowledge of the +rm does not reside in any one agent but rather resides
in the network of agents. Finally, 1rms are capable of adapting to their environ-
ment.
We model the +rm as a type of Backward Propagation Network (BPN) (Skapura,

1996). A graphical representation of the network is shown in Fig. 1. The network has
three layers. The data (information) layer is comprised of signals from the environment.
As mentioned above, a particular data vector, x, is a string of binary digits which
represents whether features from the environment are absent (0) or present (1). A
hidden (management) layer is comprised of several processing units (nodes), and the
output (CEO) layer is comprised of a single, +nal processing unit. Processing within a
layer occurs in parallel; processing between layers occurs serially. Each node performs
the same action: it takes a weighted sum of the inputs and then applies a squashing
(sigmoid) function which outputs values between 0 and 1 (i.e., large negative values
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Fig. 1. Network of managers.
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are squashed to approximately 0, large positive values are squashed to approximately
1, and intermediate values are assigned a value close to 0.5). 7

Furthermore, the network is capable of learning a data set, i.e., the economic envi-
ronment which a?ects demand. Over successive iterations (estimations), as the network
processes information, it improves its relative performance, i.e., it learns to more accu-
rately estimate the mapping between environmental characteristics and demand param-
eters. As shown in Barr and Saraceno (2002), ANNs highlight the trade-o?s to +rm
learning: small +rms learn faster, but less precisely, while larger +rms are slower to
adapt but are better able to learn in a complex environment.

4.1. The network

Here we discuss the workings of the network in more detail. As we mentioned,
the environmental data (information) layer is a binary vector x ∈X of length N .
Each of the Mi nodes (managers) in the hidden (management) layer takes a weighted
sum of the data from the data layer. That is, the jth agent in the hidden layer of +rm
i calculates

yh
ij = wh

ijx ≡ [wh
ij1x1 + · · · + wh

ijnxn + · · · + wh
ijN xN ];

where i=1; 2, j=1; : : : ; Mi, n=1; : : : ; N , and wh
ijn ∈R (time subscripts removed for nota-

tional convenience). Thus the set of ‘inputs’ to the Mi agents of the management/hidden
layer is

yhi = (yh
i1; : : : ; y

h
ij ; : : : ; y

h
iMi

) = (wh
i1x; : : : ;w

h
ijx; : : : ;w

h
iMi

x):

Each agent then transforms the inputs via a sigmoid (voting) function to produce an
output, zhij = g(yh

ij) = 1=(1 + e−yh
ij). The vector of processed outputs from the hidden

layer is

zhi = (zhi1; : : : ; z
h
ij ; : : : ; z

h
iMi

) = (g(yh
i1); : : : ; g(y

h
ij); : : : ; g(y

h
iMi

)):

The input to the output (CEO) layer is a weighted sum of all the outputs from the
hidden layer

yo
i = wo

i z
h
i ≡ (wo

i1z
h
i1 + · · · + wo

ijz
h
ij + · · · + wo

iMi
zhiMi

);

where wo
ij ∈R. Finally, the output of the network – the estimate of the quantity

q̂i – is determined by transforming yo
i via the sigmoid function, q̂i = g(yo

i ). We

7 A possible interpretation of the network is as a group of agents (managers) who assign values to
the environmental signals and pass these values up the hierarchy to a CEO, who then takes an output
decision based on these values. The CEO then observes the true best-response output and communicates this
information down the hierarchy to the managers who use this information to improve their performance in
the future periods.
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summarize the data processing (‘feed-forward’) phase of a network with one hidden
layer as 8

q̂i = g


 Mi∑

j=1

wo
ijg(w

h
ijx)


 ≡ NNi(x): (3)

Notice that the expected value of the opponent’s quantity decision does not directly
enter into Eq. (3) (that is, we do not have q̂it = NN (xt ; Eq̂−it)). In fact, if this ex-
pectation were adaptive (i.e., it included past observations of q−i) then it would be
unwarranted since the state of the environment changes from period to period, making
past quantity decisions moot. If the expectation were not adaptive, it would have to
be based on the information available to the +rm, i.e., x. This would bring us back to
Eq. (3).
Also notice that the lack of direct strategic interaction does not imply that the two

+rms do not in4uence each other. In fact, the competitor’s choice enters into the
best response ‘ideal’ quantity of the +rm, and consequently a?ects the weight update
process described in Section 4.3 below. In this framework, +rm-i’s actions a?ect +rm-
i’s payo?s, rather than +rm-i’s actions. In addition, +rms will be able to learn as long
as the behavior of the rival is not too erratic, though the rate of learning will be
a?ected. 9

In the next section we will show that the +rm maximizes pro+t by minimizing the
error it makes in choosing a quantity to produce; then, in Section 4.3 we will describe
how learning takes place.

4.2. Learning and pro1tability

Each period +rms observe an environmental state vector, x, and produce an output
given by

q̂i = NNi(x); i = 1; 2:

Given the output choices of the +rms, the pro+t function for +rm i is given by

�i = [a − b(q̂1 + q̂2)]q̂i:

Each +rm then compares its output choice to the (optimal) quantity that it would have
chosen if it produced along its reaction curve, given its rival’s choice of output, q̂−i

(see footnote 12 for further discussion on the true demand parameters):

qbri =
1
2
a
b

− 1
2
q̂−i :

8 We focus on a one hidden layer network to simplify the computation and to reduce the number of
organizational variables. Increasing complexity (size) of the +rm might also be modeled by adding hidden
layers rather than (or in addition to) nodes. The use of additional layers would be justi+ed only if we had
a very complex learning problem, which is not the case for our simple model.

9 We ran some tests, and the results show that only in extreme cases, when the competitor, for example,
chooses a random quantity with very high variance, the +rm may be unable to learn the mapping from
environmental characteristics to demand parameters.
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Given the rival’s choice of output, q̂−i, the highest pro+t +rm i could have achieved
if it produced its optimal output, qbri , is given by

�bri =
[
a − b

(
1
2
a
b

− 1
2
q̂−i + q̂−i

)][
1
2
a
b

− 1
2
q̂−i

]
= b(qbri )

2:

Next we de+ne the loss, Li, as

Li = (�bri − �i) = b[(qbri )
2 + q̂2i − 2q̂iqbri ] = b(qbri − q̂i)2: (4)

Thus we can de+ne the estimation error that the +rm makes each period as

�i = (qbri − q̂i)2; (5)

and per-period pro+t of +rm i can be given by

�i = �bri − Li = �bri − b�i:

Since +rm i’s pro+t is maximized when �i=0, the +rm attempts to minimize �i over
time, which it does via the learning algorithm procedure described in the next section.

4.3. The learning algorithm

In Section 4.1, we described how +rms choose a quantity, q̂i, given an observed
state of the environment. Over time, however, +rms improve their performance as
they learn to map di?erent states to the correct demand parameters. Each period, q̂i
is compared to the ideal output i.e., the output along the reaction function, and the
error is calculated using Eq. (5). This information is then propagated backwards as the
weights are adjusted according to the learning algorithm, which aims to minimize the
squared error, �i.
Recall that for the sigmoid function g′(yo

i )= q̂i(1− q̂i), and de+ne zhij=@(yo
i )=@(w

o
ij).

We can write the gradient of �i with respect to the output-layer weights as

9�i
9wo

ij
= −2(qbri − q̂i)q̂i(1 − q̂i)zhij :

Similarly, we can +nd the gradient of the error surface with respect to the hidden layer
weights

9�i
9wh

ijn
= −2zhij(1 − zhij)[(q

br
i − q̂i)q̂i(1 − q̂i)]wo

ijxn:

The weights are then adjusted by a small amount in the opposite (negative) direction
of the gradient. A constant, �, is the learning-rate parameter which smooths the updating
process (�=10 in the simulations below). Thus if we de+ne  oi =2(qbri − q̂i)q̂i(1− q̂i),
the weight adjustment for the output layer is

wo
ij(t + 1) = wo

ij(t) + � oijz
h
ij :

Similarly, for the hidden layer,

wh
ijn(t + 1) = wh

ijn(t) + � hijxn;
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where  hij=2zhij(1− zhij)  
o
ijw

o
ij. When the updating of weights is +nished, the +rm views

the next input pattern and repeats the weight-update process. 10

5. Learning and Cournot competition: a simulation experiment11

As a summary, let us review the estimation and learning steps for a given entropy
value:

1. The +rm i = 1; 2 observes the state of the environment xt ∈X .
2. Based on the observation of xt , it estimates how much to produce: q̂it =

g
[∑Mi

j=1 wo
ij(t)g(w

h
ij(t)xt)

]
.

3. It then observes the true parameters and calculates the optimal quantity along the

reaction function qbrit =
1
2

[
a(xt)
b(xt)

− q̂−it

]
. 12

4. The di?erence between q̂it and the best response qbrit serves as basis for the weight
updating process: �it = (qbrit − q̂it)2. Using this error, the +rm updates its weights to
improve its performance in the next round.

5. The price determined by the market is pt =[a− b(q̂1t + q̂2t)], and based on that we
calculate actual pro+t. The pro+t and the error are recorded at each t. The steps are
repeated again, until we reach t = T .

We ran each of the experiments described below 50 times and took averages in
order to smooth 4uctuations due to randomly generated initial weight values.

5.1. Experiment #1: learning optimal quantity

This section shows that networks converge to the optimal quantity. The weight up-
date process allows the network to make a correct mapping between environmen-
tal characteristics and optimal quantity. To keep things simple, for the moment, we
consider two +rms of equal size. 13

Fig. 2 shows how +rm 1 converges to the optimal quantity. The curves represent
the ratio of pro+t to the optimal value (�1t =�∗

t ), and the di?erence between quantity
and optimal quantity (|q1t − q∗

t |). Convergence implies that the +rst curve goes to
one, whereas the second converges to zero. This is, in fact, what happens. Pro+ts and
quantity tend to their Cournot–Nash optimal values, �∗

t and q∗
t .

10 We begin with a completely untrained network by selecting random weight values (i.e., we assume the
network begins with no prior knowledge of the environment).

11The simulations in the section were performed in Mathematica 3.0. The code is available upon request.
12 With a linear demand function, +rms have to observe two pairs of (p; q1 + q2) to determine the true

parameters a and b (and to compute the best response). Hence, we implicitly assume that, for each draw of
the environmental vector, +rms play at least twice, i.e., that the environment remains constant suPciently
long. Since we focus on the learning of the mapping from x to the parameters, and within each iteration no
new information is provided, these ‘subperiods’ can be neglected in the analysis.
13 In particular, M1 =M2 =8. In this initial experiment the choice of network size is not crucial. In general,

networks of di?erent sizes will converge at di?erent speeds, but none will fail to learn the optimal quantity.
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T = 200 (only the +rst 50 iterations are shown).
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The second goal of this section is to show that increasing the complexity of the
environment has, in general, the e?ect of reducing the network performance. Fig. 3 plots
the average pro+t over the T = 200 iterations, against the entropy value used for that
particular run. As expected, the average �=�∗ drops for increasing complexity; we also
plot the deviation from optimal quantity, which increases with entropy. 14

In this section we showed that networks are able to learn the optimal strategy in a
Cournot setting, and that this learning is easier in simpler environments. Given these
general features of our framework, we will turn to the main topic of this paper: the

14 In the early stages of the process pro+ts may be negative. We overlook this issue by assuming that +rms
have enough internal funds to cover initial losses.



J. Barr, F. Saraceno / Journal of Economic Dynamics & Control 29 (2005) 277–295 289

relative performance of networks of di?erent organizational structures competing in
environments of varying complexity.

5.2. Experiment #2: optimal network size

Tournament: This section investigates the performance of +rms of di?erent sizes
competing against one another. We designed the experiment as a round robin between

networks with 2–15 nodes in the hidden layer, so that we had
(

14
2

)
= 91 games.

We divided the environment into two di?erent levels of complexity, depending on the
entropy value: simple environments have an entropy going from 1.4 to 1.9, whereas
complex ones have an entropy going from 2.7 to 3.2. 15 We had 50 draws of entropy
values within each class (simple/complex), and we recorded the average pro+t and
error for the two +rms over the T =200 iterations. The total score of each network is
the sum of the average pro+ts obtained against all the other opponents. 16

The results are reported in Fig. 4. The winners in the simple environment tournament
are networks of size 3; whereas in the complex case the highest scoring networks have 7
nodes. Furthermore, looking at the extremes, we see that small networks perform quite
well in the simple environment whereas the larger ones are relatively more e?ective
in the complex environment. Finally, notice that pro+ts in the simple environment
have higher mean and standard error (0.311 and 0.0048 respectively, against 0.199 and
0.0042 for the complex environment).
To summarize, the tournament tells us that computational power may be a disadvan-

tage when the environment is simple. In this case, smaller +rms converge more rapidly
and have an overall better performance. Since this velocity is paid for in terms of
lower accuracy, in complex environments the pro+tability is reversed, and the higher
accuracy of large +rms is rewarded, compensating for slower convergence.

Regression analysis: The results of the tournament are con+rmed by another ex-
periment we ran. We made 2000 random draws of the parameters E ∈ [1:4; 3:2], M1,
M2 ∈ [2; 15], and T ∈ [30; 300]. We then let the two networks compete, and recorded
the average pro+ts and squared errors over each run. Finally, we ran a regression us-
ing as the dependent variable average pro+ts. Table 1 reports the results for +rm one
(given the symmetry, results for +rm two are analogous).
Notice that, over the relevant range, entropy and the number of iterations have the

expected signs. Namely, an increasing complexity (higher E) yields lower average
pro+t; and an increase in the number of runs T gives to the +rms more time to learn,
causing lower average error and higher average pro+t, all else equal. A more interesting
relationship exists between the number of nodes and our measures of +rm performance.
Fig. 5 plots a polynomial for which the dependent variable is the pro+t of +rm one,

15 These values are obtained by dividing the total range of E in three intervals of equal length, and
discarding (for this section) the middle one.
16 This measure, which avoids the distortions linked to measures of relative pro+t, was suggested by

Nicolaas Vriend.
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Fig. 4. Round-robin tournament. Scores for simple and complex environments. Third-order approximating
polynomials are also plotted.

and the independent variables are M1 and M2; we use the coePcients presented in
Table 1.
The +gure shows that +rm one’s pro+t is increasing in the other +rm’s dimension,

even if at a decreasing rate. We will come back to this relationship when discussing
optimal size in experiment #3.
The relationship with the +rm’s own dimension is not as clear from the picture, but it

suggests the hump-shape relationship we highlighted before. We therefore investigated
the relationship between a +rm’s size and complexity. Fig. 6 shows how pro+ts depend
on +rm one’s size and entropy, both in the relevant ranges. It shows that pro+t is
decreasing in complexity, whereas with respect to the +rm size the bell shape is clearer
for higher entropy levels. This explains why in the previous +gure, when entropy was
held constant, the relationship was less visible.
To sum up, the regression results con+rm the +ndings of the tournament, and add

new insights. Increasing complexity and shorter time to learn negatively a?ect pro+ts,
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Table 1
Regression of pro+ts over E, T , M1 and M2, including powers and cross terms. Dependent Variable:

∑
�1=T

Variable CoePcient t-stat

Const 111.02 34.7
E 5.71 2.6
E2 −2.59 −6.0
T 1.52 41.1
T 2 −0.01 −26.1
T 3 0.0000337 20.0
T 4 −0.00000004 −16.7
M1 1.307 4.8
M 2

1 −0.136 −4.7
M 3

1 0.00349 3.3
M2 8.37 30.8
M 2

2 −0.356 −12.3
M 3

2 0.00794 7.5
M1 · M2 −0.0986 −8.5
(M1 · M2)2 0.000138 4.0
(E · M1)2 −0.00445 −11.6
T · M1 0.00223 3.4
T · M2 −0.0203 −30.5
(T · M2)2 0.000002 19.2

R2 0.959
obs 2000

All coePcients are multiplied by 104 to make the table more readable. Non-signi+cant variables were
omitted.
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0.018

z

2 4 6 8 10 12 14 16

M22 4 6 8 10 12 14 16M1

Fig. 5. Average pro+t of +rm 1 as a function of size of the two +rms: 104 × U�1 = 111 + 1:3M1 − 0:13M 2
1

+ 0:003M 3
1 + 8:3M2 − 0:3M 2

2 + 0:007M 3
2 − 0:09M1M2 + 0:0001(M1M2)2.

whereas the hump-shape relationship between own size and pro+tability is more evident
at higher complexity levels. We also found that pro+ts are linked (positively) to the
opponent’s dimension, an issue that we will tackle next.
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5.3. Experiment #3: 1rm size equilibria

As discussed above, +rms learn to produce at the Nash equilibrium output level over
time. Here, however, we explore the concept of equilibrium with regards to network
size, which we call a network size equilibrium (NSE). We de+ne an NSE as a pair of
Ms such that neither +rm has an incentive to change the number of managers. That is
to say, in equilibrium, each network, given the number of agents (nodes) of its rival,
+nds that switching to another number of agents will decrease its average pro+t. Thus,
the equilibrium is a pair {M∗

1 ; M
∗
2 } such that

&i(M∗
i ; M

∗
−i)¿&i(Mi;M∗

−i); ∀Mi i = 1; 2;

where

&i =
1
T

T∑
t=1

�it(Mi;M−i):

We ask the questions: does (at least one) NSE exist for each entropy? And what is
the relationship between complexity and the size of the networks in equilibrium? As
the focus is on the equilibria that exist after T periods, we do not have endogenous
dynamics with the number of managers Mi; in other words, we do not examine +rms
changing the number of managers during the learning process. Rather we conduct a
kind of comparative statics exercise whereby we look at the NSE that arise for given
environmental conditions.
In this experiment, we have networks of di?erent sizes compete for T=200 iterations

(for each pair ofMs and entropy value we take 50 runs and take averages to smooth out
4uctuations in each run). That is to say, +rm one and two compete against each other
for each size, M1, M2 ∈ {2; : : : ; 15}. We repeat this competition for several di?erent
entropy levels. We then look to see, for each entropy value, if one (or more) NSE exist.
As an example, Fig. 7 shows the pro+ts of the two +rms, when holding constant

+rm 2’s network size at six nodes, and increasing the size of +rm 1. We see that
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+rm 1’s optimal size given +rm 2’s size (six nodes) is at +ve nodes. We also see
that after that value, there is a negative relationship between +rm 1 and 2’s pro+ts.
As we increase +rm 1’s nodes above a certain value, it achieves a relatively large
competitive disadvantage vis Wa vis +rm 2 because its network is much larger and
slower in converging to the correct weight values.
In this simulation, we generated 30 di?erent entropy values. For each of them,

we calculated the NSE and then added the total number of managers to obtain an
‘equilibrium industry size’. This gave us a data set of 62 NSEs and industry sizes, for
which there was at least one equilibrium.
We grouped each of the NSEs into three entropy/complexity categories: simple,

medium and complex, where the ranges are the same as in Section 5.2. We then
took the average industry size for each category. Fig. 8 shows the results. As we can
see average industry size is increasing in complexity. This concords with the +ndings
discussed in experiment #1 and #2.
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6. Conclusion

This paper o?ers some insights into the interaction between the competition in an
oligopolistic market and learning performance linked to organizational structure and
environmental complexity. In general, we showed that neural networks as models of
the +rm are able to converge to the unique Nash equilibrium of a Cournot game when
facing a linear demand function with stochastic parameters.
We also showed that the optimal organizational structure is not constant, but changes

with the environment. The trade-o?, that we investigated in more general terms in a
previous paper, appears in a Cournot setting as well: speed and accuracy are inversely
related, and which factor is more pro+table depends on, in general, the complexity of
the environment. This result emerges from di?erent types of experiment: a round robin
tournament, a regression analysis, and an investigation of the equilibrium structure of
the industry.
A number of open questions remain for further investigation in future research. One

is whether this structure can give us insights into the incentives for collusive behavior,
and on the +rms’ relationship with the environment. We could, for example, investigate
the relationship between environmental complexity, +rm complexity and cooperative
behavior. This structure could also be useful to investigate quantity output equilibrium
selection (a case that did not concern us here, given that we dealt with linear demand,
and consequently with a unique equilibrium). Finally we could explore the general
analytical properties of ANNs as they relate to economic phenomena, such as those
explored here.
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